微分計算の総合問題
$(c)’=0, (x)’=1, (x^n)’=nx^{n-1}, (fg)’=f’g+fg’, \left(\dfrac{f}{g}\right)^{\prime}=\dfrac{f’g-fg’}{g^2}$
$({\mathrm{log}}x)’=({\mathrm{log}}|x|)’=\dfrac{1}{x}, ({\mathrm{log}}_a x)’=\dfrac{1}{x{\mathrm{log}}a}, (a^x)’=a^x{\mathrm{log}}a, (e^x)’=e^x$
$({\mathrm{sin}}x)’={\mathrm{cos}}x, ({\mathrm{cos}}x)’=-{\mathrm{sin}}x, ({\mathrm{tan}}x)’=\dfrac{1}{{\mathrm{cos}}^2x}, ({\mathrm{cot}}x)’=\dfrac{-1}{{\mathrm{sin}}^2x}$
$({\mathrm{Sin}}^{-1}x)’=\dfrac{1}{\sqrt{1-x^2}}, ({\mathrm{Cos}}^{-1}x)’=\dfrac{-1}{\sqrt{1-x^2}}, ({\mathrm{Tan}}^{-1}x)’=\dfrac{1}{x^2+1}$