学年[2]年 学科[MI・AC・BC] 番号[] 氏名 [

間10.20 次の曲線と直線で囲まれた図形の面積を求めよ。

(1)
$$y = x^2$$
, $y = x + 2$

y有:
$$y=x^2$$
 ($x=0$ のとき $y=0$)
y= $x+2$ ($x=0$ のとき $y=2$)

$$y$$
 無 : (連立) $x^2 = x + 2$ \Rightarrow $x^2 - x - 2 = 0$

$$(x+1)(x-2) = 0$$
 $\therefore x = -1, 2$

よって, 求める面積は

$$S = \int_{-1}^{2} \{(x+2) - x^{2}\} dx = \int_{-1}^{2} (x+2-x^{2}) dx = \left[\frac{1}{2}x^{2} + 2x - \frac{1}{3}x^{3}\right]_{-1}^{2}$$
$$= \left(2 + 4 - \frac{8}{3}\right) - \left(\frac{1}{2} - 2 + \frac{1}{3}\right) = \frac{6 + 12 - 8}{3} - \frac{3 - 12 + 2}{6} = \frac{10}{3} - \frac{-7}{6} = \frac{20 + 7}{6} = \frac{27}{6} = \frac{9}{2}$$

(2)
$$y = \sin x$$
, $y = \cos x$ $\left(\frac{\pi}{4} \le x \le \frac{5}{4}\pi\right)$

y有:
$$y = \sin x$$
 $(x = \frac{\pi}{2} \text{ のとき } y = \sin \frac{\pi}{2} = 1)$ $y 無: \frac{\pi}{4} \le x \le \frac{5}{4}\pi$

$$y = \cos x$$
 $\left(x = \frac{\pi}{2} \quad \mathcal{O} \succeq \stackrel{*}{\rightleftharpoons} \quad y = \cos \frac{\pi}{2} = 0\right)$

よって、求める面積は

$$S = \int_{\frac{\pi}{4}}^{\frac{5}{4}\pi} (\sin x - \cos x) \ dx = \left[-\cos x - \sin x \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}}$$
$$= \left(-\cos \frac{5}{4}\pi - \sin \frac{5}{4}\pi \right) - \left(-\cos \frac{\pi}{4} - \sin \frac{\pi}{4} \right) = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \right) = 2\sqrt{2}$$

(3)
$$y = \frac{1}{x^2 + 3}$$
, $y = \frac{1}{4}$

y有:
$$y = \frac{1}{4}$$
, $y = \frac{1}{x^2 + 3}$ $(x = 0)$ のとき $y = \frac{1}{3} > \frac{1}{4}$

$$y$$
 無 : (連立) $\frac{1}{x^2+3} = \frac{1}{4}$ \Rightarrow $4 = x^2 + 3$ \Rightarrow $x^2 = 1$ $\therefore x = \pm 1$

よって、求める面積は (※偶関数の公式)
$$S = \int_{-1}^{1} \left(\frac{1}{x^2 + 3} - \frac{1}{4} \right) dx = 2 \int_{0}^{1} \left(\frac{1}{x^2 + 3} - \frac{1}{4} \right) dx = 2 \left[\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}} \right) - \frac{1}{4} x \right]_{0}^{1}$$
$$= 2 \left(\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) - \frac{1}{4} \right) = 2 \left(\frac{\sqrt{3}}{3} \times \frac{\pi}{6} - \frac{1}{4} \right) = \frac{\sqrt{3}}{9} \pi - \frac{1}{2}$$