2.3 分数関数

今回は、分数関数 $y = \frac{f(x)}{g(x)}$ を取扱います。

例)関数
$$y = \frac{x+3}{x+1}$$
 グラフを描け。

【復習】①標準形: $y=1+\frac{2}{x+1}$ より $y-1=\frac{2}{x+1}$

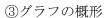
②漸近線:
$$\begin{cases} x+1=0 \\ y-1=0 \end{cases}$$
 より
$$\begin{cases} x=-1 \\ y=1 \end{cases}$$

 $\begin{array}{c|c}
1 \\
x+1 \\
\hline
 x+1 \\
\hline
 2
\end{array}$

※これは、基本のグラフ $y = \frac{k}{x}$ (今回はk = 2) を

「x軸方向に-1, y軸方向に1だけ」

平行移動したことも意味している。



y切片(x=0)

$$y = \frac{3}{1} = 3$$

x切片(y=0)

$$\frac{x+3}{x+1} = 0$$

$$x + 3 = 0$$
 $\therefore x = -3$

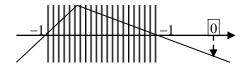
※基本的なグラフの場合は、x切片を求めますが、一般的な場合、x切片の計算は通常行いません。

【微分】①導関数
$$y' = \frac{1 \times (x+1) - (x+3) \times 1}{(x+1)^2} = \frac{(x+1) - (x+3)}{(x+1)^2} = \frac{-2}{(x+1)^2}$$

Pick up:分子から なし

分母から $x=-1(2重解)[←()^2の解に注意!]$

ジグザグ:起点 x=0 のとき y'=-2<0



※ジグザグ(符号の変化)を調べるとき、分子だけでなく、分母の値によって 符号が変化するので、符号が変化する中間点(零点)の場所を分子と分母 から求める必要があります。

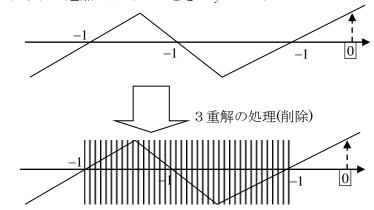
②第 2 次導関数
$$y'' = -\frac{-2 \times \{2(x+1) \times 1\}}{(x+1)^4} = \frac{4(x+1)}{(x+1)^4} = \frac{4}{(x+1)^3}$$

※微分公式
$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2} \left[\Rightarrow \left(\frac{1}{u}\right)' = -\frac{u'}{u^2} \right]$$
を適用

Pick up: 分母から なし

分子から $x=-1(3 重解)[\leftarrow ()^3 の解に注意!]$

ジグザグ:起点 x=0 のとき y''=4>0



- ※2重解(偶数個の重解)の場合は、Pick up しない。
 - 3 重解(奇数個の重解)の場合は、1 個だけ Pick up する。 とした方が、実際は簡便である。
- ③両端の極限(本来は最初に調べます)

$$\lim_{x \to \pm \infty} \frac{x+3}{x+1} = \lim_{x \to \pm \infty} \frac{1}{1} = 1$$

[※この結果は、y=1が漸近線であることを意味する]

④增減·凹凸表

まずは、3行目までを完成させましょう。

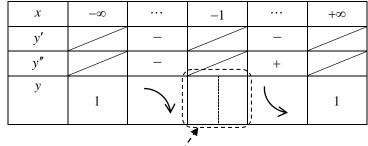
= 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1										
х	$-\infty$	{	-1		+∞					
y'		- !		<u> </u>						
y"		- ;		; +						
У		*	;	,						

※1行目の Pick up した値が

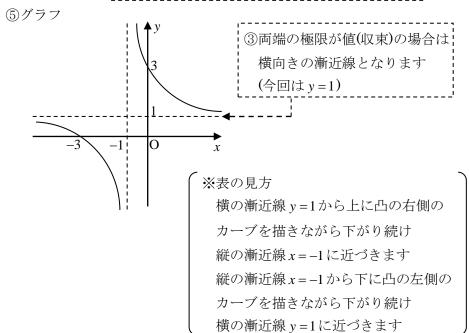
分子から得られた場合は,0を記入し

分母から得られた場合は、斜線(/)を記入します。

それでは、表を完成させましょう。							
х	-8	•••	-1	•••			



※分母の値が0になるときは、縦の破線を記入 グラフでは漸近線(今回はx=-1)として表す



【注意事項のまとめ】

- □ Pick up する点は、分子だけでなく、分母からも探す。
- \square 2 重解(偶数個の重解)のときは、pick up しない。
 - 3 重解(奇数個の重解)のときは、1 個だけ pick up する。
- 口 分子から pick up した場合は、2(3)行目には、0を記入し、分母から pick up した場合は、2(3)行目には、/を記入する。
- □ 両端の極限が値(収束)の場合は、横向きの漸近線になる。
- □ 4行目において、分母が0になるときは、縦向きの漸近線になる。
- □ 虚数解は、実数ではないので、pick up の対象とはならない

2.4 例題

例題 関数 $y = \frac{x}{x^2 + 1}$ の増減、凹凸、極値、変曲点及び両端の極限等を調べて グラフを描け。

[解答]①両端の極限
$$\lim_{x \to \pm \infty} \frac{x}{x^2 + 1} = \lim_{x \to \pm \infty} \frac{1}{2x} = \frac{1}{\pm \infty} = \pm 0$$
 (複号同順)

※複号同順とは、上のときは上の、下のときは下の符号を 読みとるという意味です。

今回は、
$$x \to +\infty$$
 のときは 極限値は $+0$ [上側] $x \to -\infty$ のときは 極限値は -0 [下側]

②導関数と第2次導関数

$$y' = \frac{1 \times (x^2 + 1) - x \times 2x}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}$$

Pick up: 分子から $1-x^2=0$ \Rightarrow $x^2=1$ $\therefore x=\pm 1$ [○] 分母から $x^2+1=0$ \Rightarrow $x^2=-1$ $\therefore x=\pm i$ [×]

※虚数解の場合は、実数ではない(グラフ上に表現されない)ので、pick upの対象外となります。

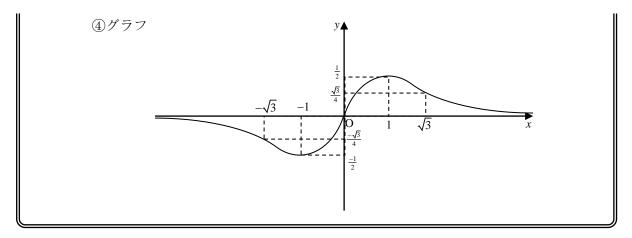
[前頁の注意事項のまとめにも記入しておきました]

$$y'' = \frac{-2x \times (x^2 + 1)^{\frac{3}{4}} - (1 - x^2) \times \{2(x^2 + 1) \times 2x\}}{(x^2 + 1)^{\frac{3}{4}3}} = \frac{-2x \times (x^2 + 1) - (1 - x^2) \times 4x}{(x^2 + 1)^3}$$
$$= \frac{-2x^3 - 2x - 4x + 4x^3}{(x^2 + 1)^3} = \frac{2x^3 - 6x}{(x^2 + 1)^3} = \frac{2x(x^2 - 3)}{(x^2 + 1)^3}$$
Pick up: $\cancel{\cancel{D}} + \cancel{\cancel{D}} + \cancel{\cancel{D}} = 0$, $\pm \sqrt{3}$

Pick up:分子から x=0, $\pm\sqrt{3}$ 分母から なし

③増減・凹凸表

х	$-\infty$		$-\sqrt{3}$		-1	•••	0	•••	1	•••	$\sqrt{3}$	•••	$+\infty$
y'			_		0		+		0		_		
y"		_	0		+		0		_		0	+	
у	-0		$\frac{-\sqrt{3}}{4}$ 変曲点	\	<u>-1</u> 2 極小	<u></u>	0 変曲点		1/2 極大		<u>√3</u> 4 変曲点	\nearrow	+0



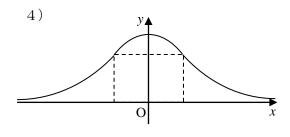
問7.5 関数 $y = \frac{1}{x^2 - 1}$ の増減、凹凸、極値、変曲点及び両端の極限等を調べてグラフを描け。

【課題の解答】

1)
$$\lim_{x\to\pm\infty}\frac{1}{x^2+3}=+0$$

2)
$$y' = \frac{-2x}{(x^2+3)^2}$$
 (Pick up:分子から $x=0$ / 分母から なし[虚数解])
$$y'' = \frac{6(x^2-1)}{(x^2+3)^3}$$
 (Pick up:分子から $x=\pm 1$ / 分母から なし[虚数解])

3) x=0 のとき 極大値 $y=\frac{1}{3}$ 4) 変曲点 $\left(\pm 1, \frac{1}{4}\right)$



(必要な数値等は記入すること!)
