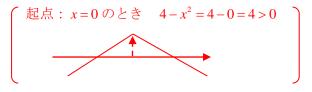
学年[2]年 学科[MI・AC・BC] 番号[] 氏名 [

- **問7.6** 関数 $y = x\sqrt{4-x^2}$ の増減、凹凸、極値、変曲点及び両端の極限等を調べて グラフを描け。
- 0) 定義域を求めよ。 $4-x^2 = (2+x)(2-x) \ge 0$ $\therefore -2 \le x \le 2$



1) 両端の極限

$$\lim_{x \to +2} x \sqrt{4 - x^2} = \pm 2 \times 0 = \pm 0$$

[※漸近線ではありませんが、+0は上側から、-0は下側から近づくを意味する]

2) 導関数と第2次導関数

$$y' = 1 \times \sqrt{4 - x^2} + x \times \frac{-2x}{2\sqrt{4 - x^2}} = \sqrt{4 - x^2} - \frac{x^2}{\sqrt{4 - x^2}}$$
$$= \frac{(\sqrt{4 - x^2})^2}{\sqrt{4 - x^2}} - \frac{x^2}{\sqrt{4 - x^2}} = \frac{(4 - x^2) - x^2}{\sqrt{4 - x^2}} = \frac{4 - 2x^2}{\sqrt{4 - x^2}} \left[= \frac{2(2 - x^2)}{\sqrt{(2 + x)(2 - x)}} \right]$$

Pick up: 分子から $x=\pm\sqrt{2}$ / 分母から $x=\pm2$

$$y'' = \frac{-4x \times \sqrt{4 - x^2} - (4 - 2x^2) \times \frac{-2x}{2\sqrt{4 - x^2}}}{(\sqrt{4 - x^2})^2} = \frac{-4x\sqrt{4 - x^2} + (4 - 2x^2) \times \frac{x}{\sqrt{4 - x^2}}}{(\sqrt{4 - x^2})^2}$$
$$= \frac{-4x(4 - x^2) + x(4 - 2x^2)}{(\sqrt{4 - x^2})^3} = \frac{-16x + 4x^3 + 4x - 2x^3}{(\sqrt{4 - x^2})^3}$$
$$= \frac{2x^3 - 12x}{(\sqrt{4 - x^2})^3} \left[= \frac{2x(x^2 - 6)}{\sqrt{(2 + x)^3(2 - x)^3}} \right]$$

Pick up: 分子から x=0, $\pm \sqrt{6}$

[※但し、 $x = \pm \sqrt{6}$ は定義域 $-2 \le x \le 2$ の外側]

分母から $x=\pm 2$

[※3重解(奇数個の重解)の場合は、1個として取り扱う]

3) 増減・凹凸表

х	-2		$-\sqrt{2}$	 0		$\sqrt{2}$		2
y'		1	0	+		0	1	
y"			+	0		_		
у	-0		-2 極小	0 変曲点	~	2 極大		+0

4) グラフ

